• news.cision.com/
  • INESC TEC/
  • Investigadores testam solução com recurso a Inteligência Artificial para classificação de ataques epiléticos quase em tempo real

Investigadores testam solução com recurso a Inteligência Artificial para classificação de ataques epiléticos quase em tempo real

Report this content

 

Resultados da investigação foram publicados pela Nature Scientific Reports


Uma equipa de investigadores do Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência (INESC TEC) e da Universidade de Munique testou uma solução para classificar crises epiléticas, utilizando um radar de infravermelhos e vídeos 3D. O estudo apresenta uma abordagem inovadora, sendo a primeira a explorar a classificação destes eventos neurológicos, em tempo quase-real, a partir de amostras de vídeo de dois segundos. A investigação demonstrou a viabilidade de um sistema de apoio ao diagnóstico e à monitorização (baseado no reconhecimento de ações com recurso a deep learning), que permite distinguir entre crises com origem nos lobos frontal e temporal do cérebro ­(os mais comuns na epilepsia), ou eventos não epiléticos. Os resultados do trabalho foram recentemente publicados pela Nature Scientific Reports.
 
A epilepsia é uma doença neurológica crónica que afeta 1% da população mundial, sendo as crises um dos principais sintomas - cuja semiologia é crucial para diagnosticar possíveis ocorrências. A análise destes ataques permite determinar a sua origem no cérebro e é geralmente realizada através de vídeos e de eletroencefalogramas, em unidades de monitorização da epilepsia (UME), por profissionais de saúde especializados. "Durante o diagnóstico clínico, os profissionais utilizam estes vídeos para reconhecer, visualmente, movimentos relevantes definidos por características de movimento (semiologia)", explica Tamás Karácsony, investigador do INESC TEC e aluno dos Programas de Doutoramento Afiliados do Programa Carnegie Mellon Portugal, atualmente na Faculdade de Engenharia da Universidade do Porto (FEUP).
 
No entanto, a avaliação da semiologia é limitada por uma alta variabilidade entre os referidos profissionais e, apesar de promissoras, as abordagens automática e semiautomática com recurso a visão computacional ainda dependem da intervenção humana. "Por norma, os pacientes são vigiados ao longo de vários dias, devendo ser feita uma análise posterior dos ataques. Isto requer muito tempo e esforço por parte dos profissionais", acrescenta o investigador.
 
Nesse sentido, os investigadores desenvolveram uma abordagem baseada em deep learning para a classificação automática, e em tempo quase-real, de crises epiléticas. Esta abordagem é a primeira a explorar a classificação a partir de amostras de dois segundos, por oposição a outros métodos, que requerem informação do período total da crise, que dura habitualmente vários minutos. "Apresentamos uma nova solução, inspirada na forma como os especialistas analisam a semiologia das crises, considerando não só a presença de movimentos específicos em diferentes partes do corpo dos pacientes, mas também a sua dinâmica e os seus aspetos biomecânicos, como padrões de velocidade, aceleração ou amplitude de movimento", afirma Tamás Karácsony.
 
A equipa recorreu à maior base de dados de vídeos 3D síncronos com eletroencefalogramas também resultado desta colaboração internacional com mais de 20 anos e extraiu informação relativa a 115 crises, tendo desenvolvido um algoritmo de pré-processamento semiespecializado e automático para remover elementos desnecessários. Em termos práticos, são combinados dois métodos de recorte de imagem – profundidade e Recursive-Convolutional Neural Networks (R-CNN) –, que proporcionam uma imagem limpa e, consequentemente, melhoram a extração de informações relevantes dos vídeos disponíveis, minimizando variações não relacionadas e melhorando o processo de classificação de ataques.
 
"A nossa solução recorre a uma abordagem de reconhecimento de ação com um recorte 3D inteligente, de forma a remover informações não relacionadas, como os médicos que se movimentam em redor dos pacientes, por exemplo. Assim, o nosso método melhorou significativamente o desempenho da classificação", assumiu o investigador.
 
De acordo com João Paulo Cunha, coautor do estudo, investigador coordenador do projeto e docente na FEUP, a investigação desenvolvida demonstrou a viabilidade da solução no apoio à monitorização online – com recurso a inteligência artificial com base numa abordagem de ação-reconhecimento. “Este trabalho comprova a viabilidade da nossa abordagem de ação-reconhecimento que distingue três classes de semiologia epilética – dois tipos de crises epiléticas e uma outra classe de episódios não epiléticos – utilizando apenas amostras de dois segundos. Assim, este método torna-se o primeiro a assegurar uma capacidade para a monitorização em tempo quase-real em contexto de vídeos utilizados em ambientes clínico. Mais: a solução que apresentamos pode ser aplicada a outros conjuntos de vídeos 3D, na análise de episódios do foro motor, por exemplo associados a tremores essenciais ou à doença de Parkinson”, refere.
 
Desta forma, ao traduzir este conhecimento para um melhor diagnóstico e tratamento, a abordagem serve dois propósitos: “O conhecimento adquirido pode ser aplicado no processo de diagnóstico através de monitorização de vídeos e eletroencefalogramas. Irá contribuir para uma maior precisão, uma maior eficiência durante a análise do paciente, e para a recolha de dados sobre a relação entre a doença e os sintomas associados às crises. Mais tarde, poderá ser utilizado em contexto ambulatório, na monitorização de crises e nos tratamentos de epilepsia refratária”, refere Jan Rémi, líder da Unidade de Monitorização de Epilepsia da Universidade de Munique, Alemanha, e coautor do artigo.  
 
Será ainda necessário aprofundar este tipo de investigação para que o sistema em causa possa ser implementado em contexto da rotina clínica. No entanto, espera-se que, a longo prazo, o sistema beneficie os médicos, as instituições e os pacientes. "Com o apoio do diagnóstico automático, os profissionais gastam menos tempo a estudar os vídeos, podendo, assim, tratar mais pacientes e tomar melhores decisões, o que reduz os custos associados (materiais e de saúde) para as instituições e a sociedade em geral", conclui Tamás.
 

Tags:

Subscrever