Major climate benefits when ships “fly” over the surface

Report this content


Researchers at Chalmers and SSPA in Sweden present a unique measurement technique, tested on hydrofoil sailing boats, to adapt hydrofoils to larger passenger ferries.
Image: Lloyd Images. Watch a video from the British Sailing Team. 

Soon, electric passenger ferries skimming above the surface across the seas may become a reality. At Chalmers University of Technology, Sweden, a research team has created a unique method for further developing hydrofoils that can significantly increase the range of electric vessels and reduce the fuel consumption of fossil-powered ships by 80 per cent.  

While the electrification of cars is well advanced, the world's passenger ferries are still powered almost exclusively by fossil fuels. The limiting factor is battery capacity, which is not enough to power ships and ferries across longer distances. But now researchers at Chalmers and the marine research facility SSPA have succeeded in developing a method that can make the shipping industry significantly greener in the future. The focus is on hydrofoils that, like wings, lift the boat’s hull above the surface of the water and allow the boat to travel with considerably less water resistance. A technology that in recent years has revolutionised sailing, by which hydrofoils make elite sailors' boats fly over the surface of the water at a very high speed.
The researchers at Chalmers and SSPA now want to enable the sailboats' hydrofoil principle to be used on larger passenger ferries as well, resulting in major benefits for the climate.

"The electrification of ferries cannot be done without drastically reducing their water resistance. This method will allow the development of new foil designs that can reduce resistance by up to 80 per cent, which in turn would significantly increase the range of a battery powered ship. In this way, we could also use electric ferries on longer distances in the future," says research leader Arash Eslamdoost, Associate Professor in Applied Hydrodynamics at Chalmers and author of the study Fluid-Structure Interaction of a Foiling Craft published in the Journal of Marine Science and Engineering.

Even for ships that today run on fossil fuels the climate benefit could be  significant, as similar hydrofoil technology could reduce fuel consumption by no less than 80 per cent.

Unique measurement method arouses broad interest
At the centre of the research project is a unique measurement technique that the researchers have put together in order to understand in detail how hydrofoils behave in the water when, for example, the load or speed increases or the positioning of the hydrofoil changes. Using the data collected from the experiments, the team has developed and validated a method to simulate and predict with great precision how the hydrofoil would behave under a variety of conditions. The method is unique of its kind and can now be used to develop the design of hydrofoils for electric powered hydrofoil ferries.

The study was conducted in collaboration with the research facility SSPA – one of only a few of its kind in the world – where Laura Marimon Giovannetti works as a researcher and project manager. She is the lead author of the study and has herself competed at the elite level for both the British and Italian national sailing teams. Today she is a research and development adviser to Sweden's Olympic committee and the Swedish national team with her sights set on helping the team win more medals at the Olympics in 2024. Marimon Giovannetti sees many possibilities for the unique measurement method developed by the team:

"At the Americas Cup in San Francisco Bay in 2013, it was the first time we saw a 72-foot sailing boat learning how to “fly” using hydrofoils during the competition. And since then, we've seen a huge increase in sailing boats with hydrofoils. With this new method and knowledge we are able to bring together a range of different branches of engineering – naval architecture, advanced materials and aeronautics as well as renewable energy."

Paving the way for hydrofoils on electric ferries
Hydrofoil technology is not in itself a novelty, but was developed as early as the 60s and 70s. Back then the focus was on getting boats to travel at as fast as possible and the hydrofoils were made of steel, a heavy material with higher maintenance costs. Today's modern hydrofoils are made of carbon fibre, a much lighter and stiffer material that can maintain its rigidity even under high loads – and can be tailored to the expected loads. Part of the research project was therefore to fully understand how a carbon fibre structure behaves underwater during different operational conditions. The research team's method developed in association with modern technology is now paving the way for the use of carbon fibre hydrofoils on larger passenger ships that can travel in a safe, controlled and climate-friendly way even at low speeds.

"You want the foil to be as efficient as possible, which means carrying as much weight as possible at as low a speed as possible with the least resistance. Our next goal is to use this method when designing more efficient hydrofoils for ferries in the future," says Eslamdoost.

More about the scientific article

  • The study "Fluid-Structure Interaction of a Foiling Craft" has been published in the Journal of Marine Science and Engineering. The authors are Laura Marimon Giovannetti, Ali Farousi, Fabian Ebbesson, Alois Thollot, Alex Shiri and Arash Eslamdoost. The researchers are active at SSPA (part of RISE Research Institutes of Sweden), Chalmers University of Technology in Sweden and INP-ENSEEITH in France.
  • Hugo Hammar’s funding from SSPA and Rolf Sörman’s funding from Chalmers University of Technology provided the financial support to run the experimental tests at SSPA. This study also received funding from the Chalmers University of Technology Foundation for the strategic research project Hydro- and Aerodynamics.

For more information, please contact:

Arash Eslamdoost, Associate Professor in Applied Hydrodynamics at the Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Sweden
 +46 31 772 36 84  arash.eslamdoost@chalmers.se

Laura Marimon Giovannetti, Senior Researcher and Project Manager, SSPA, Sweden
+46 73 072 91 82, laura.marimongiovannetti@sspa.se

Mia Halleröd Palmgren
Press Officer
+46-31-772 3252
mia.hallerodpalmgren@chalmers.se

________________

Chalmers University of Technology in Gothenburg, Sweden, conducts research and education in technology and natural sciences at a high international level. The university has 3100 employees and 10,000 students, and offers education in engineering, science, shipping and architecture.

With scientific excellence as a basis, Chalmers promotes knowledge and technical solutions for a sustainable world. Through global commitment and entrepreneurship, we foster an innovative spirit, in close collaboration with wider society.The EU’s biggest research initiative – the Graphene Flagship – is coordinated by Chalmers. We are also leading the development of a Swedish quantum computer.

Chalmers was founded in 1829 and has the same motto today as it did then: Avancez – forward.

---

Images provided in Chalmers University of Technology press releases are, unless specified otherwise, free for download and publication as long as credit is given to the University and the individual creator. Cropping and rescaling of the images is permitted when required for adaptation to the publication’s format, but modifications that would influence the message and content of the original are not. The material is primarily intended for journalistic and informative use, to assist in communication and coverage of Chalmers’ research and education. Commercial usage, for example the marketing of goods and services, is not permitted.

We kindly request credit to be given in the following format where possible:

Image/Graphic/Illustration: Chalmers University of Technology | Name Surname