New method makes microcombs ten times more efficient

Report this content

Microcombs can help us discover planets outside our solar system and track new diseases in our bodies. But current microcombs are inefficient and unable to reach their full potential. Now, researchers at Chalmers University of Technology in Sweden have scored a world first with their solution to make microcombs ten times more efficient. Their breakthrough opens the way to new discoveries in space and healthcare and paves the way for high-performance lasers in a range of other technologies.

Laser frequency combs can measure frequencies with revolutionary precision and are considered the most disruptive technological advance in the field since the birth of the laser. Simply put, a microcomb is like a ruler made of light. The principle is based on a laser sending photons that circulate inside a small cavity, a so-called microresonator, where the light is divided into a wide range of frequencies. These frequencies are precisely positioned in relation to each other, like the markings on a ruler. Thus, a new kind of light source can be created consisting of hundreds – or even thousands – of frequencies, like lasers beaming in unison.

Since virtually all optical measurements are connected to light frequencies, the microcomb has a multitude of applications – from calibrating instruments that measure signals at light-year distances in space in the search for exoplanets, to identifying and keeping track of our health via the air we exhale.

Unprecedented, ground-breaking efficiency

Up to now, a fundamental problem with microcombs has been that their efficiency was too weak to produce a wider technological impact on society.  The conversion efficiency between the laser and the microcomb was too weak, meaning that only a fraction of the power contained in the laser beam was usable. But now, a Chalmers research team has successfully developed a method to increase the effect of the microcomb’s laser beams tenfold.

“We’ve developed a new method that breaks what was previously thought to be a fundamental limit for optical conversion efficiency. Our method increases the laser power of the soliton microcomb by ten times and raises its efficiency from around 1 percent to over 50 percent,” says Victor Torres Company, Professor of Photonics at Chalmers.

The new method uses two microresonators, as opposed to just one. They form a unique ensemble with properties that are greater than the sum of its parts. One of the resonators enables the light coming from the laser to couple with the other resonator; rather like impedance matching in electronics.

“The new microcombs have transformative potential because they make high-performance laser technology available to many more markets. For example, frequency combs could be used in lidar modules for autonomous driving, or in GPS satellites and environmental sensing drones, or in data centres to enable bandwidth-intensive AI apps,” says Torres Company.

More about the study:

The method opens up completely new areas of application for high-performance lasers. The technology was recently patented by the project’s researchers. They have founded Iloomina AB, a company which will launch the technology onto a wider market.

The study was conducted by researchers Óskar B. Helgason, Marcello Girardi, Zhichao Ye, Fuchuan Lei, Jochen Schröder and Victor Torres Company at the Department of Photonics at the Department of Microtechnology and Nanoscience at Chalmers University of Technology.

Read the study “Surpassing the nonlinear conversion efficiency of soliton microcombs” published in Nature Photonics

The research project was financed by the European Research Council and the Swedish Research Council.

For more information, please contact:

Victor Torres Company, Professor, Department of Microtechnology and Nanoscience, Chalmers University of Technology, +46 31 772 19 04, torresv@chalmers.se
 

Caption: The two rings in the image are microresonators. The bigger ring is the one where the microcomb is generated. The microcomb is formed by a pulse of light – here illustrated with a red spike and also known as a soliton - that recirculates in the cavity forever. The key aspect is that the smaller ring helps in coupling the light from the straight waveguide, illustrated by the straight orange line at the bottom, into the bigger ring. In other words, it behaves as impedance matching, and therefore the soliton is generated more efficiently. Illustration credit: Óskar Helgason

Karin Wik
Press officer
+46-078 864835
karin.wik@chalmers.se

________________

Chalmers University of Technology in Gothenburg, Sweden, conducts research and education in technology and natural sciences at a high international level. The university has 3100 employees and 10,000 students, and offers education in engineering, science, shipping and architecture.

With scientific excellence as a basis, Chalmers promotes knowledge and technical solutions for a sustainable world. Through global commitment and entrepreneurship, we foster an innovative spirit, in close collaboration with wider society.The EU’s biggest research initiative – the Graphene Flagship – is coordinated by Chalmers. We are also leading the development of a Swedish quantum computer.

Chalmers was founded in 1829 and has the same motto today as it did then: Avancez – forward.

---

Images provided in Chalmers University of Technology press releases are, unless specified otherwise, free for download and publication as long as credit is given to the University and the individual creator. Cropping and rescaling of the images is permitted when required for adaptation to the publication’s format, but modifications that would influence the message and content of the original are not. The material is primarily intended for journalistic and informative use, to assist in communication and coverage of Chalmers’ research and education. Commercial usage, for example the marketing of goods and services, is not permitted.

We kindly request credit to be given in the following format where possible:

Image/Graphic/Illustration: Chalmers University of Technology | Name Surname

Subscribe

Media

Media