• news.cision.com/
  • Chalmers/
  • Surgical and engineering innovations enable unprecedented control over every finger of a bionic hand

Surgical and engineering innovations enable unprecedented control over every finger of a bionic hand

Report this content

For the first time, a person with an arm amputation can manipulate each finger of a bionic hand as if it was his own. Thanks to revolutionary surgical and engineering advancements that seamlessly merge humans with machines, this breakthrough offers new hope and possibilities for people with amputations worldwide. A study in Science Translational Medicine presents the first documented case of an individual whose body was surgically modified to incorporate implanted sensors and a skeletal implant. A.I. algorithms then translated the user’s intentions into movement of the prosthesis. 

Prosthetic limbs are the most common solution to replace a lost extremity. However, they are hard to control and often unreliable with only a couple of movements available. Remnant muscles in the residual limb are the preferred source of control for bionic hands. This is because patients can contract muscles at will, and the electrical activity generated by the contractions can be used to tell the prosthetic hand what to do, for instance, open or close. A major problem at higher amputation levels, such as above the elbow, is that not many muscles remain to command the many robotic joints needed to truly restore the function of an arm and hand.

Control over each finger of a bionic hand at will

A multidisciplinary team of surgeons and engineers has circumvented this problem by reconfiguring the residual limb and integrating sensors and a skeletal implant to connect with a prosthesis electrically and mechanically. By dissecting the peripheral nerves and redistributing them to new muscle targets used as biological amplifiers, the bionic prosthesis can now access much more information so the user can command many robotic joints at will (video: youtu.be/h1N-vKku0hg).

The research was led by Professor Max Ortiz Catalan, Founding Director of the Center for Bionics and Pain Research (CBPR) in Sweden, Head of Neural Prosthetics Research at the Bionics Institute in Australia, and Professor of Bionics at Chalmers University of Technology in Sweden. 

Rewiring nerves conducive to improved prosthetic control

“In this article, we show that rewiring nerves to different muscle targets in a distributed and concurrent manner is not only possible but also conducive to improved prosthetic control. A key feature of our work is that we have the possibility to clinically implement more refine surgical procedures and embed sensors in the neuromuscular constructs at the time of the surgery, which we then connect to the electronic system of the prosthesis via an osseointegrated interface. A.I. algorithms take care of the rest.” 

High level of functionality

Prosthetic limbs are commonly attached to the body by a socket that compresses the residual limb causing discomfort and is mechanically unstable. An alternative to socket attachment is to use a titanium implant placed within the residual bone which becomes strongly anchored – this is known as osseointegration. Such skeletal attachment allows for comfortable and more efficient mechanical connection of the prosthesis to the body.

“It is rewarding to see that our cutting-edge surgical and engineering innovation can provide such a high level of functionality for an individual with an arm amputation. This achievement is based on over 30 years of gradual development of the concept, in which I am proud to have contributed” comments Dr. Rickard Brånemark, research affiliate at MIT, associate professor at Gothenburg University, CEO of Integrum, a leading expert on osseointegration for limb prostheses, who conducted the implantation of the interface.  

Single-finger control as well as sensory feedback

The surgery took place at the Sahlgrenska University Hospital, Sweden, where CBPR is located. The neuromuscular reconstruction procedure was conducted by Dr. Paolo Sassu, who also led the first hand transplantation performed in Scandinavia. 

“The incredible journey we have undertaken together with the bionic engineers at CBPR has allowed us to combine new microsurgical techniques with sophisticated implanted electrodes that provide single-finger control of a prosthetic arm as well as sensory feedback. Patients who have suffered from an arm amputation might now see a brighter future”, says Dr. Sassu, who is presently working at the Istituto Ortopedico Rizzoli in Italy. 

The Science Translational Medicine article illustrates how the transferred nerves progressively connected to their new hosting muscles. Once the innervation process had advanced enough, the researchers connected them to the prosthesis so the patient could control every finger of a prosthetic hand as if it would be his own (video: https://youtu.be/3Zn6T3GlONY). The researchers also demonstrated how the system respond in activities of the daily life (video: https://youtu.be/yC24WRoGIe8) and are currently in the process of further improving the controllability of the bionic hand.

Multimedia content

All images and videos in this link.

Captions

Controlling the individual fingers overlay 1-2: Patient wearing a prosthetic arm directly attached to the skeleton and neuromuscular system, which after surgical recunstruction of his residual limb, allows him to control individual fingers of a bionic hand.

Max Ortiz Catalan, patient and Jan Zbinden: Prof. Max Ortiz-Catalan (left) and Jan Zbinden (right) with the individual implanted with the neuromusculoskeletal interface and surgical reconstruction that allows for all fingers of a bionic hand to be intuitively controlled.

Patient wearing a prostethic limb 1-2: Patient wearing a prosthetic limb in the lab at the Center of Bionics and Pain research.

Prof Max Ortiz Catalan: Prof. Max Ortiz Catalan. Founding Director of the Center for Bionics and Pain Research, Sweden, and Head of Neural Prosthetics Research at the Bionics Insitute, Australia.

Schematic illustration: Schematic illustration of the surgical procedure resulting in the creation of electro-neuromuscular constructs used to control the prosthesis. Electrodes and an osseointegrated interface provide the electrical and mechanical connection to the prosthesis, respectively.

More about the research

The work was conducted by researchers at the Center for Bionics and Pain Research (CBPR), a multidisciplinary collaboration between Chalmers University of Technology, Sahlgrenska University Hospital, and Sahlgrenska Academy at the University of Gothenburg, all in Gothenburg, Sweden; the Bionics Institute in Melbourne, Australia; the Istituto Ortopedico Rizzoli, Bologna, Italy; the Scuola Superiore Sant’Anna, Pisa, Italy; the University of Colorado, Aurora, USA. the Massachusetts Institute of Technology, Cambridge, USA; and the medical device company Integrum AB in Sweden.

The research was financed by the Promobilia Foundation, the IngaBritt and Arne Lundbergs Foundation, and the Swedish Research Council (Vetenskapsrådet).

For more information, please contact:

Prof. Max Ortiz Catalan, Center for Bionics and Pain Research, Sweden, and Bionics Institute, Australia. +46 70 846 10 65, maxortizc@outlook.com 

Henrik Dahlberg
Head of Media Relations Unit

+46-31-772 1940
henrik.dahlberg@chalmers.se

________________

Chalmers University of Technology in Gothenburg, Sweden, conducts research and education in technology and natural sciences at a high international level. The university has 3100 employees and 10,000 students, and offers education in engineering, science, shipping and architecture.

With scientific excellence as a basis, Chalmers promotes knowledge and technical solutions for a sustainable world. Through global commitment and entrepreneurship, we foster an innovative spirit, in close collaboration with wider society.The EU’s biggest research initiative – the Graphene Flagship – is coordinated by Chalmers. We are also leading the development of a Swedish quantum computer.

Chalmers was founded in 1829 and has the same motto today as it did then: Avancez – forward.

---

Images provided in Chalmers University of Technology press releases are, unless specified otherwise, free for download and publication as long as credit is given to the University and the individual creator. Cropping and rescaling of the images is permitted when required for adaptation to the publication’s format, but modifications that would influence the message and content of the original are not. The material is primarily intended for journalistic and informative use, to assist in communication and coverage of Chalmers’ research and education. Commercial usage, for example the marketing of goods and services, is not permitted.

We kindly request credit to be given in the following format where possible:

Image/Graphic/Illustration: Chalmers University of Technology | Name Surname

Subscribe

Quotes

We show that rewiring nerves to different muscle targets in a distributed and concurrent manner is not only possible but also conducive to improved prosthetic control.
Max Ortiz Catalan