New method significantly improves the production of biohydrogen and other biochemicals

A joint study by the University of Turku and VTT Technical Research Centre of Finland has shown that the ability of photosynthesising microbial cells to produce biohydrogen from solar energy can be markedly improved by attaching the cells to a transparent nanocellulose film. The method is also expected to enhance the production of other biochemicals from microalgal cells. The results have been published in the prestigious Journal of Materials Chemistry A.

The work of Yagut Allahverdiyeva (Associate Professor of Molecular Plant Biology at the University of Turku) and her team on the utilisation of photosynthetic microalgae and cyanobacteria is considered among the most promising enablers of the bioeconomy. Thanks to the simple engineered biofilm structures, solar energy captured by photosynthesis can be directed into the desired end-product in an efficient and controlled manner.

– The key role is played by cell immobilisation, i.e. binding the cells within or onto a surface of a gel-like substance, whereby the cell metabolism shifts from the growth of biomass to the production of the desired compounds. Additionally, attachment of the cells to a thin, transparent film significantly reduces the loss of light energy compared to normal cultivation of microalgae in the growth medium, says Allahverdiyeva.

Material suitable for immobilisation must be porous, transparent, water-resistant and biologically compatible with algal cells.

– Nanocellulose film meets all these requirements. It is an effective replacement for the material used until now, an alginate polymer with relatively poor mechanical durability and low porosity. The transparent nanocellulose film developed by VTT has better mechanical performance and its porosity can be easily tailored, says Tekla Tammelin, a Principal Scientist at VTT.

The study revealed the high compatibility of nanocellulose with hydrogen-producing green algae and cyanobacteria. In addition, the hydrogen production yields of green algal cells were clearly higher for the nanocellulose membrane than when using alginate.

– What is more, the release of molecules larger than hydrogen from the nanocellulose film can be facilitated by an optimal pore structure, which will be used in the future production of other biochemicals required by industry, such as hydrocarbons or terpenes, says Allahverdiyeva.

The research, which was funded by the Novo Nordisk Foundation, has been published in the Journal of Materials Chemistry A. M. Jämsä, S. Kosourov, V. Rissanen, M. Hakalahti, J. Pere, J. Ketoja, T. Tammelin, Y. Allahverdiyeva: Versatile templates from cellulose nanofibrils for photosynthetic microbial biofuel production.

For more information, please contact:

University of Turku
Yagut Allahverdiyeva
Tel. +358 50 350 6181

VTT Technical Research Centre of Finland
Tekla Tammelin

Further information on VTT:

Paula Bergqvist
Specialist, External Communications
+358 20 722 5161

VTT Technical Research Centre of Finland Ltd is one of the leading research, development and innovation organizations in Europe. We help our customers and society to grow and renew through applied research. The business sector and the entire society get the best benefit from VTT when we solve challenges that require world-class know-how together and translate them into business opportunities. VTT in social media: Twitter @VTTFinland, Facebook, LinkedIn, YouTube and Instagram. For photos and videos, please visit our Image Bank.


About Us

VTT is a visionary research, development and innovation partner. We drive sustainable growth and tackle the biggest global challenges of our time and turn them into growth opportunities. We go beyond the obvious to help the society and companies to grow through technological innovations. We have over 75 years of experience of top-level research and science-based results. VTT´s turnover and other operating income is 268 M€. VTT is at the sweet spot where innovation and business come together. VTT – beyond the obvious.