“What we learn in improving bioenergy grasses in many cases can also be applied to cereal crops to improve their productivity. Setaria viridis, the model species that will be used as the focus of our research, is closely related to corn and Brachypodium, another model grass of interest at the Danforth Center that has a genetic makeup similar to wheat,” said Dr. Tom Brutnell, director of the Enterprise Rent-A-Car Institute for Renewable Fuels who is serving as Principal Investigator on the grant.
“Sometimes atomic structure gives us clues on how viruses work and how to make better vaccines,” said Dr. Thomas Smith, principal investigator, at The Donald Danforth Plant Science Center whose recent article, Structural Basis for Broad Detection of Genogroup II Noroviruses by a Monoclonal Antibody That Binds to a Site Occluded in the Viral Particle, in the Journal of Virology was selected by the editors as an, “Article of Significant Interest, sighting the extreme norovirus flexibility suggested by these results may allow for broad antibody recognition, a finding of potential vaccine significance.”