Unika 3D-bilder avslöjar nervtrådars arkitektur
I ett stort internationellt forskningssamarbete lett från Lunds universitet har forskare studerat vad som sker i nerverna vid diabetes med hjälp av synkrotronljus. Tekniken som de använt kan med väldigt hög upplösning visa nervtrådarnas struktur i 3D.
– Kunskapen kan användas för att kartlägga mekanismer för hur nervtrådar förtvinar och försöker växa ut igen. Det här innebär att vi bättre kan förstå hur diabetes påverkar nerver i armar och ben, säger Lars Dahlin, professor vid Lunds universitet.
Genom att använda sig av synkrotronljus har forskarna i 3D i detalj kunnat visa vad som sker då nervtrådar påverkas i perifera nerver. Sådana förändringar kan uppstå vid neuropati, en nervsjukdom som kan drabba patienter med typ 2- och särskilt vid typ 1-diabetes, men förändringarna kan även inträffa i samband med skador på perifera nerver då nervtrådarna behöver växa ut efter att nerver åtgärdats med kirurgiska ingrepp.
– Vid neuropati, och när sådana skador uppstår, förtvinar nervtrådarna, något man vetat sedan tidigare. Det verkar som att när de sedan växer ut från skadan så tar de nya vägar – de är mer ”förvirrade”. Man skulle kunna säga att de har dålig GPS. Men riktigt hur detta ser ut har ingen visat tidigare, förklarar Lars Dahlin, professor vid Lunds universitet och överläkare vid Skånes universitetssjukhus.
Med tidigare tekniker har det varit möjligt att studera vävnader och nervtrådar tvådimensionellt, men nu ville forskarna undersöka om det gick att studera nervtrådarnas arkitektur med hjälp av modern synkrotronteknik. De 3D-bilder som blev resultatet visar delar av nervtrådarna som tidigare inte beskrivits.
– Det här är ett helt nytt sätt att studera nerver på än när man använder tvådimensionella bilder, så kallad histologi, där man tittar på vävnaden snitt för snitt. Här får vi fram en bild som gör att vi kan vrida och vända på nervtråden och uppfatta detaljer på ett helt annat sätt, förklarar Martin Bech, medicinsk strålningsfysiker vid Lunds universitet och en av forskarna som medverkat i studien.
Om man jämför synkrotronljus med den röntgenutrustning som används på ett sjukhus, är synkrotronkällan som används som avbildningsteknik i det här experimentet ungefär hundra miljarder gånger mer intensivt. Det är som ett mikroskop, men med röntgenljus som har mycket kortare våglängd än vanligt ljus. Det i sin tur gör att man ner på cellnivå i detalj kan studera mjuka vävnader utan att göra snitt – så kallad virtuell histologi.
Förutom forskare från Lunds universitet och Skånes universitetssjukhus har forskare vid synkrotronanläggningen European Synchrotron Radiation Facility (ESRF) i Grenoble, DTU i Köpenhamn och Linköpings universitet medverkat i studien som nu publiceras i Scientific Reports.
Nerverna som forskarna studerat kommer från nervbiopsier från tre individer: en frisk, en person med typ 1-diabetes samt en person med typ 2-diabetes. Alla hade genomgått operation för karpaltunnelsyndrom, ett vanligt tillstånd, och särskilt hos personer med diabetes.
Forskarna kunde i detalj kartlägga hur det ser ut när det tillsammans med friska nervtrådar växte ut tunna nervtrådar, så kallade regenerativa kluster. Forskarna fann också att när en nervtråd tillbakabildas på grund av diabetesneuropati växer en ny nervtråd ut igen från den skadade nervtråden på ett speciellt sätt.
– De här nerverna försöker att växa ut igen efter att de påverkats av diabetes. Men de växer inte på ett normalt sätt, utan mer tvistat. De ligger skruvade. Att kunna se detta i 3D ger oss ett helt annan möjlighet att förstå hur nervtrådar växer, vilket har betydelse både vid diabetesneuropati och vid direkta skador på nerverna, förklarar Lars Dahlin.
Forskarna arbetar nu med en uppföljande, större, studie i vilken man hoppas att ytterligare kunna kartlägga ett större antal nervtrådar. I studien undersöks hur tjockleken av nervtrådarna varierar, samt i vilken omfattning de regenerativa klustren förekommer.
– Detta kan, dels fördjupa vår kunskap om biologiska förändringar vid diabetes, dels på sikt ändra olika behandlingsprinciper, säger Lars Dahlin.
Publikation
"Three-dimensional architecture of human diabetic peripheral nerves revealed by X-ray phase contrast holographic nanotomography”
https://www.nature.com/articles/s41598-020-64430-5
Scientific Reports, 5 maj 2020, DOI https://doi.org/10.1038/s41598-020-64430-5
Kontakta:
Lars Dahlin, professor i handkirurgi vid Lunds universitet och överläkare vid Skånes universitetssjukhus, 072-225 05 40, lars.dahlin@med.lu.se
Martin Beck, universitetslektor i Medicinsk strålningsfysik vid Lunds universitet, 0735696290, martin.bech@med.lu.se
För mer bild- och filmmaterial kontakta Martin Bech.
-----------------
Presskontakt Medicinska fakulteten vid Lunds universitet: Katrin Ståhl, 046-222 01 31, 0725-27 97 97, katrin.stahl@med.lu.se
Taggar: